banner4 banner4_m

Research

Theoretical and Computational Condensed Matter GroupBACK

RESEARCH ACTIVITIES

Theoretical condensed matter physics is a very important area in physical sciences. It concerns with many fundamental subjects and has very wide and potentially important applications in material science, biophysical science, high technology, and even economy and finance. We have a very active research group in this field with focuses in topological matters, 2D materials, spintronics and valleytronics, nanoelectronics, quantum many-body physics. The group closely collaborates with the ECMM group.

 

The group’s current research interests include:

 

  1. strongly correlated electron systems;
  2. topological matters;
  3. quantum materials;
  4. quantum computing;
  5. quantum magnetism;
  6. spintronics and valleytronics;
  7. quantum transport;
  8. semiconductor optics;
  9. interdisciplinary study of cold atom physics and condensed matter physics
  10. computational approaches in quantum many-body systems
  11. scientific computing and neuromorphic AI accelerator in physics

SOME REPRESENTATIVE PUBLICATIONS

(For the complete publication list of the department, please go back to Research.)

 

Prof. Z.Y. Meng

  1. "Emmy Noether looks at the deconfined quantum critical point", Nvsen Ma, Yi-Zhuang You, Zi Yang MengPhysical Review Letters122, 175701 (2019)
  2. "Monte Carlo Study of Compact Quantum Electrodynamics with Fermionic Matter: the Parent State of Quantum Phases”, Xiao Yan Xu, Yang Qi, Long Zhang, Fakher F. Assaad, Cenke Xu, Zi Yang MengPhysical Review X9, 021022 (2019)


Prof. S.Q. Shen

  1. "Negative magnetoresistance in Dirac semimetal Cd3As2", H. Li, H. He, H.Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S.Q. Shen, and J. Wang, Nature Communications7, 10301 (2016)
  2. "Topological superconducting states in monolayer FeSe/SrTiO3", N.N. Hao and S.Q. ShenPhysical Review B, 92, 165104 (2015)
  3. "Weak antilocalization and localization in disordered and interacting Weyl semimetals", Hai-Z. Lu and S.Q. ShenPhysical Review B, 92, 035203 (2015)
  4. "Finite temperature conductivity and magnetoconductivity of topological insulators" H.Z. Lu and S.Q. ShenPhysical Review Letters112, 146601 (2014)
  5. "Quantum transport in magnetic topological insulator thin film", H.Z. Lu, A. Zhao and S.Q. ShenPhysical Review Letters111, 146802 (2013)
  6. "Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions", H.Z. Lu, A. Zhao and S.Q. ShenPhysical Review Letters111, 146802 (2013)
  7. "Competition between Weak Localization and Antilocalization in Topological Surface States", H.Z. Lu, W. Yao, D. Xiao, and S.Q. ShenPhysical Review Letters107, 076801 (2011)
  8. "Topological Anderson Insulator", J. Li, R.L. Chu, J.K. Jain and S.Q. ShenPhysical Review Letters102, 136806 (2009).


Prof. Z.D. Wang

  1. "Novel Z2 topological metals and semimetals", Y. X. Zhao and Z. D. WangPhys. Rev. Lett.116, 016401 (2016)
  2. “Unified theory of PT and CP invariant topological metals and nodal superconductors”, Y. X. Zhao, A. P. Schynder, and Z. D. WangPhys. Rev. Lett.,116, 156402 (2016)
  3. “Disordered Weyl semimetals and their topological family”, Y.X. Zhao and Z.D. WangPhys. Rev. Lett.114, 206602 (2015)
  4. “Topological classification and stability of Fermi surfaces”, Y.X. Zhao and Z.D. WangPhys. Rev. Lett.110,  240404 (2013)
  5. "Unconventional Geometric Quantum Computation", S.L. Zhu and Z.D. WangPhys. Rev. Lett.91, 187902 (2003)
  6. "Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases", S.L. Zhu and Z.D. WangPhys. Rev. Lett.89, 097902 (2002)


Prof. W. Yao

  1. "Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers”, K. Seyler, P. Rivera, H. Yu, N. Wilson, E. Ray, D. Mandrus, J. Yan, W. Yao, X. Xu, Nature 567, 66 (2019)
  2. “Moire excitons: from programmable quantum emitter arrays to spin-orbit coupled artificial lattices”, H. Yu, G. Liu, J. Tang, X. Xu & W. Yao, Science Advances 3, e1701696 (2017)
  3. "Topological Mosaic in Moiré superlattices of van der Waals heterobilayers", Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, Wang YaoNature Physics13, 356 (2017)
  4. “Excitonic luminescence upconversion in a two-dimensional semiconductor”, A. Jones, Hongyi Yu, J. Schaibley, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, H. Dery, W. Yao and X. Xu, Nature Physics12, 323 (2016)
  5. "Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers", Hongyi Yu, Y. Wang, Qingjun Tong, X. Xu and Wang YaoPhys. Rev. Lett., 115, 187002 (2015)
  6. “Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals”, H.Y. Yu, Y. Wu, G.B. Liu, X.D. Xu and W. YaoPhys. Rev. Lett. 113, 156603 (2014) 
  7. “Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides”, H.Y. Yu, G.B. Liu, P. Gong, X.D. Xu and W. YaoNature Communications5, 3876 (2014)
  8. "Optical generation of excitonic valley coherence in monolayer WSe2", A. Jones, H.Y. Yu, N. Ghimire, S.F. Wu, G. Aivazian, J. Ross, B. Zhao, J.Q. Yan, D. Mandrus, D. Xiao, W. Yao, X.D. Xu, Nature Nanotechnology8, 634 (2013)
  9. "Magnetoelectric effects and valley controlled spin quantum gates in transition metal dichalcogenide bilayers", Z.R. Gong, G.B. Liu, H.Y. Yu, D. Xiao, X.D. Cui, X.D. Xu, W. YaoNature Communications4, 2053 (2013)
  10. "Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides", D. Xiao, G.B. Liu, W.X. Feng, X.D. Xu and W. YaoPhysical Review Letters108, 196802 (2012)

 

Prof. S.Z. Zhang

  1. "Evidence for Universal Relations Describing a Gas with p-Wave Interactions", C. Luciuk, S. Trotzky, S. Smale, Z. Yu, S. Zhang, and J. H. Thywissen, Nature Physics6, 599-605 (2016)
  2. "Universal Relations for a Fermi Gas Close to a p-Wave Interaction Resonance", Z.H. Yu, J.H. Thywissen, S.Z. ZhangPhysical Review Letters115, 135304:1-5 (2015)
  3. “Transverse Demagnetization Dynamics of a Unitary Fermi Gas”, A.B. Bardon, S. Beattie, C. Luciuk, W. Cairncross, D. Fine, N.S. Cheng, G.J.A. Edge, E. Taylor, S.Z. Zhang, S. Trotzky, J.H. Thywissen, Science, 344, 722-724 (2014)
  4. “Theory of quantum oscillations in the vortex-liquid state of high-Tc superconductors”,S. Banerjee, S.Z. Zhang, M. Randeria, Nature Communications, 4, 1700:1-7 (2013)
  5. "Bose-Einstein condensates with spin-orbit interaction", T.L. Ho and S.Z. ZhangPhysics Review Letter107, 150403 (2011)
  6. "BEC-BCS crossover induced by a synthetic non-abelian gauge field", J.P. Vyasanakere, S.Z. Zhang and V. Shenoy, Physics Review B84, 014512 (2011)
  7. "Atom loss maximum in ultracold Fermi gases", S.Z. Zhang and T.L. Ho, New Journal of Physics13, 055003 (2011)
  8. "Universal properties of the ultracold Fermi gas", S.Z. Zhang and A.J. Leggett, Physics Review A79, 023601 (2009)