Abstract
A simple time dependent system is solved analytically taking the form of a moving step-up or step-down in refractive index. We demonstrate that step motion, by a process of compression or expansion, adds or subtracts energy from radiation passing through, so heating or cooling the photons.
Biography
Professor Sir John Pendry received his Ph.D. in Solid State Theory from the University of Cambridge in 1969. He began his career in the Cavendish Laboratory, Cambridge, and later worked at Downing College, Bell Laboratories and Daresbury Laboratory. Since 1981, he has been the Chair in Theoretical Solid-State Physics in the Imperial College London. Professor Sir Pendry is a condensed matter theorist known for his research into refractive indexes and creation of the first practical “Invisibility Cloak”. He has worked extensively on electronic and structural properties of surfaces, developing the theory of low energy diffraction and electronic surface states and transport in disordered systems. He was elected a Fellow of the Royal Society in 1984, and Fellow or Foreign Member in several professional organizations including the American Academy of Arts and Sciences, US National Academy of Sciences, the Norwegian Academy of Science and Letters and the American Physical Society. He has received numerous honors and awards recognizing his contributions, culminating in his knighthood for services to science in 2004, and the Royal Medal of the Royal Society in 2006. He was also awarded the Isaac Newton Medal in 2013, the Kavli Prize in 2014, the Dan David Prize and Ugo Fano Gold Medal in 2016, the John Howard Dellinger Medal in 2017 and the SPIE Mozi Award in 2019. Recently, he received the 2024 Kyoto Prize.
Anyone interested is welcome to attend.